
L'impiego del poliuretano espanso nelle costruzioni. Opportunità e sicurezza antincendio.

Roma 24 maggio 2016

Sicurezza dei canali aria in poliuretano

Antonio Temporin

Cosa sono i canali aria in poliuretano

Reazione e resistenza al fuoco

- I canali in alluminio preisolato vengono utilizzati per la realizzazione di impianti di condizionamento, riscaldamento e rinnovo aria e non per impianti di evacuazione fumi di combustione o soluzioni di compartimentazione.
- Per questo motivo <u>la normativa che disciplina il</u> <u>comportamento al fuoco di questi canali prevede solo la</u> <u>reazione e non la resistenza al fuoco</u>.
- Il decreto di riferimento è quindi il D.M. 31-03-2003
 - Requisiti di reazione al fuoco dei materiali costituenti le condotte di distribuzione e ripresa dell'aria degli impianti di condizionamento e ventilazione.

II D.M. 31-03-2003

Gazzetta Ufficiale

Numero GII: 086 DataGII: 12/04/2003 Data Articolo: 31/03/2003

Descrizione: Requisiti di reazione al fuoco dei materiali costituenti le condotte di distribuzione e

ripresa dell'aria degli impianti di condizionamento e ventilazione.

Ente emittente: Ministero Dell'Interno

Codice: 03A04686

MINISTERO DELL'INTERNO

DECRETO 31 marzo 2003

Requisiti di reazione al fuoco dei materiali costit dell'aria degli impianti di condizionamento e ve

IL MINISTRO

- Vista la legge 27 dicembre 1941, n. 1570;
- · Visto l'art. 1 della legge 13 maggio 1961, n. 469;
- Visto l'art. 2 della legge 26 luglio 1965, n. 966;
 Visto il decreto del Presidente della Repubblica 2
- · Visto il decreto del Ministro dell'interno 26 giugn
- · Visto il decreto del Ministro dell'interno 14 genna
- · Visto il decreto del Ministro dell'interno 26 marzi
- · Visto il decreto del Ministro dell'interno 5 agosto
- · Vista la decisione 2000/147/CE dell'8 febbraio 2
- riguarda la classificazione di reazione al fuoco dei Rilevata la necessità di emanare specifiche dispo
- costituenti le condotte di distribuzione e ripresa ari · Acquisito il parere favorevole del comitato centrale tecnico scientifico per la prevenzione incendi d cui all'art. 10 del decreto del Presidente della Repubblica 29 luglio 1982, n. 577;

Art. 1.

Scopo e campo di applicazione

soggette ai controlli di prevenzione incendi.

- Visto l'art. 11 del citato decreto del Presidente della Repubblica 29 luglio 1982, n. 577;
- · Espletata la procedura di informazione ai sensi della direttiva n. 98/34/CE come modificata dalla
- direttiva n. 98/48/CE;

Scopo e campo di applicazione

1. Il presente decreto stabilisce i requisiti di reazione al fuoco dei materiali costituenti le condotte di distribuzione e ripresa dell'aria degli impianti di condizionamento e ventilazione a servizio di attività soggette ai controlli di prevenzione incendi.

1. Il presente decreto stabilisce i requisiti di reazione al fuoco dei materiali costituenti le condotte di

distribuzione e ripresa dell'aria degli impianti di condizionamento e ventilazione a servizio di attività

II D.M. 31-03-2003

Art. 2

- Requisiti di reazione al fuoco dei materiali costituenti le condotte
- 1. Le condotte sono realizzate in materiale di classe di reazione al fuoco 0 (zero).
- 2. Nel caso di condotte preisolate, realizzate con diversi componenti tra loro stratificati di cui almeno uno con funzione isolante, è ammessa la classe di reazione al fuuco 0-1 (zero-uno). Detta condizione si intende rispettata quando tutte le superfici del manufatto, in condizione d'uso, sono realizzate con materiale incombustibile di spessore non inferiore a 0,08 millimetri e sono in grado di assicurare, anche nel tempo, la continuità di protezione del componente isolante interno, di classe di reazione al fluoro non superiore ad 1 (uno).
- 3. I giunti ed i tubi di raccordo, la cui lunghezza non è superiore a 5 volte il diametro del raccordo stesso, sono realizzati in materiale di classe di reazione al fuoco 0 (zero), 0-1 (zero-uno), 1-0 (unozero), 1-1 (uno-uno) o 1 (uno).
- Le condotte di classe 0 (zero) sono rivestite esternamente con materiali isolanti di classe di reazione al fuoco non superiore ad 1 (uno).
- 5. Nelle more dell'emanazione di specifiche norme tecniche armonizzate e dei connessi sistemi di classificazione per la tipologia di prodotti oggetto del presente decreto, sono ammessi manufatti in classe di reazione al fuoco A₁, come definita nel sistema di classificazione europeo di cui alla decisione 2000/147/CE.
- 6. I materiali di cui al comma 5 sono omologati dal Ministero dell'interno ed individuati come "condotte di ventilazione e riscaldamento" o "manufatti completi isolanti per condotte di ventilazione e riscaldamento". La rispondenza a quanto dichiarato dal produttore, circa le modalità di assemblaggio ed installazione del manufatto, è attestata dall'installatore mediante apposita dichiarazione di conformità. Art. 3.

Commercializzazione

- 1. I prodotti originari di Paesi contraenti l'accordo SEE possono essere commercializzati in Italia per essere impiegati nel campo di applicazione disciplinato dal presente decreto se muniti delle autorizzazioni alla commercializzazione previste dalle disposizioni cogenti comunitarie o italiane.
- Ai fini del rilascio, da parte del Ministero dell'interno, delle previste autorizzazioni alla commercializzazione, sono accettate le certificazioni di produtti legalmente riconosciuti in uno della commercializzazione.

Stati contraenti l'accordo SEE, previo l'a fuoco stabilite al precedente art. 2. Le su riconosciuto a tal fine da un Paese memb 3. Nelle more dell'entrata in vigore dei co

 Nelle more dell'entrata in vigore dei commercializzazione comunitaria, ai pro applica la normativa italiana vigente che concordate con i servizi della Commissio agosto 1991.

Disposizioni finali

Sono abrogate tutte le precedenti disposi Il presente decreto sarà pubblicato nella

chiunque spetti di osservarlo e farlo osse

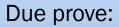
Roma, 31 marzo 2003 Il Ministro: Pisanu

Art. 2

Requisiti di reazione al fuoco dei materiali costituenti le condotte

- 1. Le condotte sono realizzate in materiale di classe di reazione al fuoco 0 (zero).
- 2. Nel caso di condotte preisolate, realizzate con diversi componenti tra loro stratificati di cui almeno uno con funzione isolante, è ammessa la classe di reazione al fuoco 0-1 (zero-uno).

Detta condizione si intende rispettata quando tutte le superfici del manufatto, in condizione d'uso, sono realizzate con materiale incombustibile di spessore non inferiore a 0,08 millimetri e sono in grado di assicurare, anche nel tempo, la continuità di protezione del componente isolante interno, di classe di reazione al fuoco non superiore ad 1 (uno).



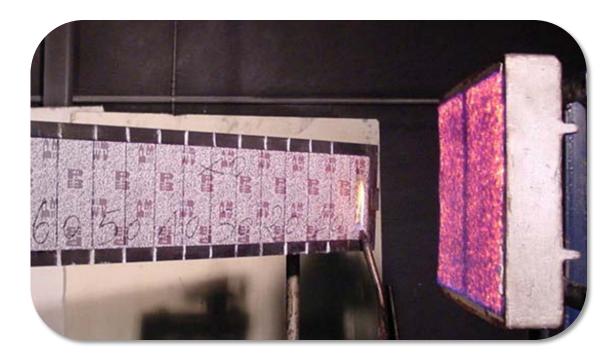
La reazione al fuoco in Italia

DM 26.6.84

Classificazione di reazione al fuoco ed omologazione dei materiali ai fini della prevenzione incendi

UNI 8457 e UNI 9174

Dalla combinazione dei risultati dei due test si ottiene la CLASSE DI REAZIONE AL FUOCO



Prove di reazione al fuoco

UNI 8457, la fiamma di innesco simula la fase iniziale di un incendio

UNI 9174, la fiamma di innesco e la piastra radiante simulano la fase di sviluppo di un incendio

La classe 0-1

Materiale composito (poliuretano e alluminio): doppia classificazione

- Il fronte di fiamma non avanza oltre i 150 mm (limite per la classe 1: 200 mm).
- Il poliuretano in presenza di forte calore carbonizza. Non si riscontra gocciolamento di materiale incandescente.

Risultato: Classe 0-1

II test ISO 9705 Room Corner Test

Il test replica (per temperatura e durata) le condizioni reali di un incendio:

- viene utilizzato un bruciatore in grado di sviluppare 300 kW
- il canale in prova viene installato ricreando una conformazione a curva
- utilizzo del bruciatore a 100 kW per 10 min. (incendio in fase di sviluppo)
- utilizzo del bruciatore a 300 kW per altri 10 min. (incendio generalizzato)

Il test ISO 9705 room corner test prove comparative

Canale preisolato in poliuretano espanso rivestito in alluminio - Classe 0-1

Canale in lamiera isolato con lana minerale rivestita in carta alluminata

Il test ISO 9705 room corner test

Unico test in grado di simulare un incendio di grande scala

Canale preisolato espanso ad acqua

- limitata zona danneggiata
- assenza di propagazione delle fiamme
- temperatura dell'aria normale

Canale in lamiera

- distacco dello strato isolante
- propagazione delle fiamme
- temperatura dell'aria elevata

L'euroclassificazione

- **D.M. 10 marzo 2005**: "classi di reazione al fuoco per i prodotti da costruzione da impiegarsi nelle opere per le quali è prescritto il requisito della sicurezza in caso di incendio"
- **D.M.** 15 marzo 2005: "requisiti di reazione al fuoco dei prodotti da costruzione installati in attività disciplinate da specifiche disposizioni tecniche di prevenzione incendi in base al sistema di classificazione europeo"
- Il decreto stabilisce che "si considera materiale da costruzione qualsiasi prodotto fabbricato al fine di essere permanentemente incorporato in opere da costruzione".

L'euroclassificazione

- Il canale aria non è da considerarsi come materiale da costruzione pertanto l'euroclassificazione non è da ritenersi obbligatoria.
- Questi materiali comunque **sottoposti alla norma EN 13501-1** garantiscono le seguenti classificazioni: **B-s2,d0 / B-s3,d0**.

Fumi di combustione

In caso di incendio la causa principale di mortalità non è dovuta tanto alle fiamme quanto ai fumi di combustione che vengono sprigionati.

A riguardo i materiali sono stati sottoposti alle più severe normative vigenti in materia di tossicità e opacità dei fumi di combustione, tra queste:

- AFNOR NF F 16-101 (classe F1 in una scala F0 migliore F5 peggiore)
- EN50399 (prova di grande scala cavi elettrici)

Fumi di combustione

AFNOR NF F 16-101

Tale norma permette di determinare per i vari materiali un **indice di fumosità** IF che viene calcolato attraverso una formula matematica che tiene conto sia della tossicità sia dell'opacità dei fumi di combustione.

EN50399-2-1/2

I parametri che vengono valutati sono:

FEC (Fractional Effective Concentrations) che definisce la soglia ritenuta limite per i gas irritanti che possono influire sull'incapacitazione dell'organismo umano a raggiungere le vie di fuga.

FED (**Fractional Effective Dose**) che definisce la soglia ritenuta limite per i gas nocivi letali.

In entrambi i casi il valore limite da non superare è pari a 0,3.

I test secondo AFNOR NF F 16-101

- norma francese applicata al settore ferroviario;
- determinazione di un indice di fumosità (IF);
- calcolo matematico che tiene conto della tossicità e dell'opacità dei fumi di combustione.

I test secondo AFNOR NF F 16-101: tossicità dei fumi

Gas da rilevare	Concentrazione critica (CCi)	Concentrazione rilevata per il pannello in poliuretano
Anidride carbonica	1750 mg/m ³	462,6 mg/g
Monossido di carbonio	90000 mg/m ³	205,4 mg/g
Anidride solforosa	260 mg/m ³	N.R.
Acido cianidrico	55 mg/m ³	13,1 mg/g
Acido fluoridrico	17 mg/m ³	N.R.
Acido bromidrico	170 mg/m ³	N.R.
Acido cloridrico	150 mg/m ³	N.R.

I test secondo AFNOR NF F 16-101: tossicità dei fumi

Determinazione di un indice denominato ITC dato da:

ITC =
$$100 \times \Sigma (t_i / CC_i)$$

dove **CCi** corrisponde alle concentrazioni critiche dei vari gas da rilevare e ti alle concentrazioni rilevate in fase di test per il materiale in analisi come di seguito indicato

I test secondo AFNOR NF F 16-101: opacità dei fumi

Il test permette di calcolare il valore di densità ottica specifica massima (Dm) e il valore di oscuramento del fumo dopo 4 minuti di prova (V0F4).

Questi 3 parametri ossia l'ITC, il Dm e il V0F4 permettono di determinare secondo la formula di seguito riportata la classe IF del materiale:

IF = (Dm/100) + (V0F4/30) + (ITC/2)

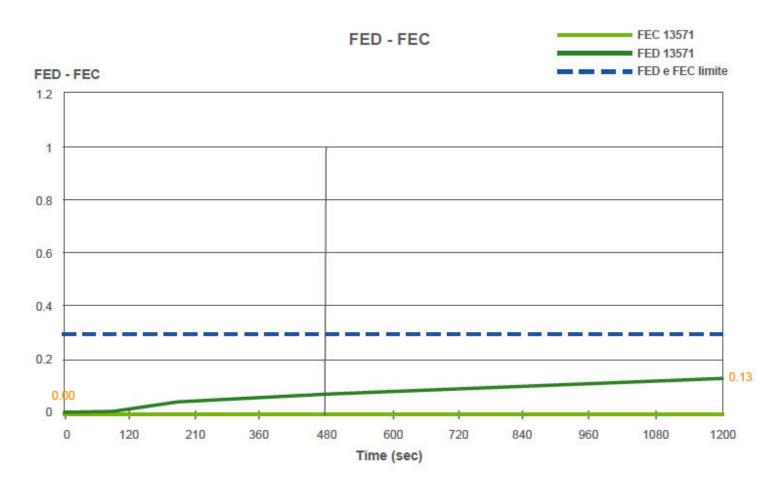
I test secondo AFNOR NF F 16-101: i risultati

Classe	Valore di IF
F0	≤ 5
F1	≤ 20
F2	≤ 40
F3	≤ 80
F4	≤ 120
F5	> 120

I test secondo EN 50399-2-1/2: la metodologia di analisi

- norma sviluppata per il settore dei cavi elettrici, estremamente selettiva;
- misurazione tramite un gruppo ottico della produzione di fumo e della conseguente riduzione della visibilità;
- analisi in continuo degli effluenti della combustione tramite tecnica FTIR (Spettroscopia continua nell'infrarosso a trasformata di Fourier)

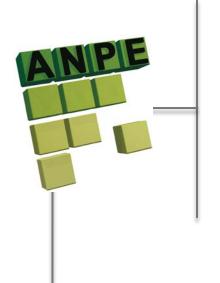
I test secondo EN 50399-2-1/2: i parametri monitorati


- rilevazione sostanze irritanti secondo norma **ISO TS 13751**
- rilevazione parametro FEC (Fractional **Effective Concentration)**
- rilevazione parametro FED (Fractional **Effective Dose**)

I risultati di laboratorio secondo EN 50399-2-1/2

Riassumendo

Test	Risultato
reazione al fuoco D.M. 26/06/1984	0-1
reazione al fuoco ISO 9705	superato
tossicità ed opacità fumi NF F 16-101	F1
tossicità fumi EN 50399-2	FEC=0 (limite 0,3) FED=0,13 (limite 0,3)


L'impiego del poliuretano espanso nelle costruzioni. Opportunità e sicurezza antincendio.

Roma 24 maggio 2016

Grazie per l'attenzione

Antonio Temporin

www.poliuretano.it